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ABSTRACT

The Laser Tomography Adaptive Optics (LTAO) system for the Giant Magellan Telescope employs six off-axis
laser guide stars (LGSs) to estimate the on-axis wavefront. This paper addresses the challenges associated with
wavefront sensing using highly elongated LGSs. We evaluate and compare several wavefront slope estimation
algorithms currently baselined for the three Extremely Large Telescopes, highlighting their respective strengths
and limitations. In particular, we consider their performance off-null operation, which occurs due both to laser
jitter and to the use of centroid origins to compensate for non-common path aberrations. We show that both
the weighted centroid and the matched filter algorithms perform well, with the former being more robust against
LGS profile variations. Dynamic recentering of the spots further improves the centroiding accuracy. In the
second part of the paper, we focus on tomographic wavefront reconstruction. We demonstrate that the applying
accurate diagonal values to the noise covariance matrix reduces the wavefront error. This error can be further
reduced by using a non-diagonal covariance matrix that incorporates the correlations between measurements
within a subaperture. End-to-end Monte-Carlo simulations are run using CEO, an optical propagation package
developed for the GMT.

Keywords: adaptive optics, laser tomography adaptive optics, centroiding, wavefront sensing, wavefront recon-
struction, Giant Magellan Telescope

1. INTRODUCTION

The three Extremely Large Telescopes (ELTs) currently under design or construction will all employ Laser
Tomography Adaptive Optics (LTAO) systems to provide high Strehl ratio correction over a small field of view.
LTAO systems use multiple off-axis laser guide stars (LGSs) to estimate the on-axis wavefront. The LGSs are
propagated from either behind the secondary mirror in the case of the Thirty Meter Telescope (TMT) or from the
side of the telescope in the case of the Giant Magellan Telescope (GMT) and of the Extremely Large Telescope
(ELT).

The LGS spots are elongated due to the finite thickness of the sodium layer in the mesosphere, which is
located at an altitude of approximately 80 km to 100 km above sea level. All planned LTAO systems for the
ELTs will measure the wavefront using Shack-Hartmann wavefront sensors (SH WFSs). The SH WFS subdivides
the pupil using a lenslet array, and each subaperture produces an image of the LGS. The effect of LGS elongations
on the WFS measurements has been studied extensively for the two adaptive optics (AO) systems at the W. M.
Keck Observatory.[1, 2] Numerical modeling of the elongations has also been implemented for the TMT, and the
methods described in Wang et al. are adopted in this paper.[3]

The LGS elongation is proportional to the distance in the pupil plane between the launch telescope and the
subaperture. Due to their large primary mirror diameters, the ELTs will have highly elongated LGS spots for
subapertures situated far from the launch telescope, and this has long been considered a showstopper.[4] The
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advent of fast, large format, low read noise detectors,[5] as well as lasers that produce a high sodium return,[6]
has enabled the design of LTAO systems for the ELTs.

The use of this technology alone is not sufficient to reduce the measurement noise to acceptable levels.
The displacement of the spots on the WFS is proportional to the wavefront slope. The slopes are conventionally
estimated using a centroid (center of gravity) algorithm, but due to the large number of pixels required to sample
the elongated spots adequately, the measurement noise using the centroid is unacceptably high.[7] In this paper,
we describe the wavefront slope estimation algorithms planned for the ELTs and evaluate their performance and
their dynamic range. In addition, we show that incorporating full (non-diagonal) noise covariance matrices in
the wavefront reconstructors can reduce the impact of the increased noise along the elongation direction while
making full use of the measurements in the orthogonal direction.

The remainder of the paper is as follows. In Section 2, we describe the wavefront slope estimation algorithms
proposed by the three ELTs. Section 3 describes the end-to-end simulations used to evaluate the performance of
the centroiding algorithms using simulation parameters representative of the GMT LTAO system. The simulation
results are presented in Section 4, comparing the various algorithms with respect to computation time, linearity,
sensitivity to measurement noise and sensitivity to uplink tip-tilt errors. Section 5 presents the tomographic
wavefront reconstruction algorithms. In particular, we show that a non-diagonal noise covariance matrix leads
to a reduced wavefront error. Finally, conclusions are drawn in Section 6.

2. WAVEFRONT SLOPE ESTIMATION

In this section, we review the wavefront slope estimation algorithms proposed for the ELTs. Before applying a
centroiding algorithm, all subaperture images are background subtracted and thresholded to zero to remove any
negative pixel values.

2.1 Centroid

First, we present the centroid, also known as the center of gravity (CoG) algorithm, which is the “gold standard”
for wavefront slope estimation. The centroid, (xc, yc) is computed as:
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where I(x, y) is the intensity of the pixel at position (x, y).

While the centroid algorithm suffers from high noise when there is a large number of pixels per subaperture,[7]
as is the case for elongated LGS spots, it is useful as a comparison for noiseless wavefront sensor measurements.

2.2 Weighted centroid

The weighted centroid (or weighted center of gravity, WCoG) algorithm is a modification of the standard centroid
algorithm that applies a weighting function to the pixel intensities. The weighting function is typically chosen
to match the expected shape of the LGS spot, which can help reduce the impact of noise, especially when there
are a large number of pixels. The weighted centroid is computed in the following manner:
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where w(x, y) represents the pixel weights applied to the pixel intensities. The pixel weights vary from subaperture
to subaperture, depending on the elongation of the LGS spot. They can also vary with time as the elevation or
azimuth of the telescope change or the sodium layer profile changes.



The weighted centroid algorithm is baselined for the HARMONI instrument at the ELT,[8] and is also favored
for the LTAO system at the GMT. The choice of weighting function has a strong effect on the performance. The
weighting functions can be computed using a model of the sodium layer profile, or they can be derived from the
measured LGS spot images themselves. The latter approach requires averaging multiple frames to reduce noise,
which can limit the algorithm’s ability to track rapid changes in the sodium layer profile.

The modeling for HARMONI assumes that the LGS elongation is well known. The weighting function is
computed by convolving the LGS elongation by a Gaussian kernel representing the LGS spot. The LGS spot
used to compute the weighting function is much larger (typically a dactor of 2.5) than the real LGS, as shown
in Figure 1(b). The weights are thus a smoother version of the expected intensity at each subaperture.

The GMT has chosen a different approach for the pixel weights. Initially, a binary weights map was used,
where the value of the weight is unity for pixels with an expected intensity greater than half the read noise, and
zero elsewhere. This works very well for the case where the spots are well centered on the subaperture, but the
performance degrades if the spots are off-center. We have added the option of a soft weights map, where the
weights are defined as the expected intensity divided by a quarter of the read noise, with a maximum value of
unity. This approach retains more information when the spots are off-center, as shown in Figure 1(d).

(a) Noiseless subaperture (b) HARMONI weights (c) Hard weights (d) Soft weights

Figure 1: Typical noiseless elongated spot and corresponding weights used in the weighted centroid.

2.3 Weighted centroid with dynamic recentering

The weighted centroid with dynamic recentering (WCoG-DR) algorithm is a modification of the weighted centroid
algorithm that includes an iterative recentering step. This approach is designed to improve the accuracy of the
slope estimates when the LGS spots are not well centered on the subapertures, which occurs due to uplink tip-tilt
errors or large centroid origins. The algorithm is implemented as follows:

1. Compute the weighted centroid of the subimage.

2. Displace the subimage based on the computed weighted centroid.

3. Compute the weighted centroid of the displaced subimage and add to the weighted centroid of Step 1.

In this work, the subimage is only recentered once, but the process can be iterated multiple times if necessary.
The subimage is displaced using a Fourier shift:

1. Compute the Fourier transform of the subimage using the FFT algorithm.

2. Multiply the Fourier transform by a phase ramp corresponding to the desired subimage shift.

3. Compute the inverse Fourier transform to obtain the shifted subimage.



2.4 Matched filter

The matched filter was introduced as a practical solution to the spot elongation problem facing TMT by Gilles
and Ellerbroek.[9] The principle behind the matched filter is to compute a derivative of the normalized pixel
intensities with respect to displacements in the x and y directions. It produces low-noise slope estimates for
elongated LGS spots. However, the linear range of the matched filter is very limited and low-order aberrations
result when the spots are decentered by even a fraction of a pixel. An elegant solution to this problem is to add
a set of linear constraints corresponding to a displacement by a pixel in each direction.[10]

For each Npix×Npix pixel subaperture image, the matched filter computes the slope as follows by multiplying
each pixel in the image by a 2 × N2

pix matrix. As a result, computing the centroid using the matched filter is
computationally very efficient. Details on the implementation of the matched filter and how to compute the
matrix are found in Gilles and Ellerbroek.[10] The matched filter is baselined for the NFIRAOS system at
TMT.[3]

3. SIMULATION DESCRIPTION

In this section, we describe the simulations performed to evaluate the performance of the proposed centroiding
methods. We used end-to-end simulations in the CEO environment,[11] a simulation tool written specifically to
model the optical behavior of the GMT. The simulations were written in Python and use GPU processing for
speed with the aid of the CuPy library.

3.1 Disturbances

The only disturbances in these simulations are atmospheric turbulence. The atmospheric parameters are derived
from the typical-typical profile for January 2008 from Goodwin[12] and are reproduced in Table 1. This turbulence

Table 1: Turbulence profile used in the simulations.

Elevation (m) Turbulence fraction Wind speed (m/s) Wind direction (◦)

25 0.126 5.65 0.78
275 0.087 5.80 8.25
425 0.067 5.89 12.48
1250 0.350 6.64 32.50
4000 0.227 13.29 72.10
8000 0.068 34.83 93.20
13000 0.075 29.42 100.05

profile has a higher fraction of turbulence in the free atmosphere compared to profiles from other studies, including
those measured by the same author four months earlier. This leads to strong angular anisoplanatism, which is
compensated in the tip-tilt sensor using a dedicated DM. Unless otherwise specified, the value of r0 is 0.16m at
a wavelength of 500 nm at zenith with an outer scale of 25m, median values for the site. All of the simulations
were run at zenith, because that is where the elongation is at its greatest.

No telescope windshake or other telescope aberrations, including segment piston errors, are included in these
simulations, in order to accentuate the difference between the different sensing algorithms.

3.2 Sodium profiles

The sodium profiles used in this report originate from the University of British Columbia (UBC) Lidar and
reported in multiple papers by Pfrommer and Hickson.[13, 14] There are 176 data sets where there are 180
measurements of the intensity profiles every 10s with a vertical resolution of 200 m. During the course of our
work, all of the sodium profiles were evaluated and sorted by the effect of the LGS aberrations on the wavefront
error. Unless otherwise specified, the sodium profile used in these simulations is the typical profile shown in
Figure 2.



Figure 2: Sodium profile used in the simulations.

The temporal evolution of this sodium profile is shown in Figure 3.

Figure 3: Sodium profile evolution as a function of time (in seconds).

The sodium density data reported by the University of British Columbia LIDAR are intensity profiles of
the fluorescent sodium layer viewed from the ground and are not true sodium density profiles. This makes the
computation of the LGS elongation easier, because we do not need to take into account the distance to the
sodium layer when computing the intensity.

3.3 Wavefront sensors

Two wavefront sensing units are simulated: the laser tomography WFS (LTWS) and the tip-tilt sensor.

The LTWS consists of six Shack-Hartmann WFS with 60 × 60 lenslets across the pupil. The LGSs are
projected in a regular hexagonal constellation on the sky at an off-axis distance of 30′′. Physical optics are used
to model the spots on both of the WFSs. The relevant noise parameters for the LGS WFSs are tabulated in
Table 2.



Table 2: LGS WFS parameters used in the simulations.

Parameter Value

Wavelength 589 nm
Bandwidth 1 nm
Optical throughput 48%
Laser power 22W
Number of LGSs 6
Sodium column density 4×1013 m−2

Intrinsic LGS spot size 1′′ FWHM
Subapertures across pupil 60× 60
Pixels per subaperture 14× 14
Pixel scale 0.857”
Frame rate 500 Hz
Readout noise 2.5 e−

Dark current 0 e−/s
Sky background 0 e−/s
Readout bits 12
ADU gain 15 ADU/e−

The detector for the tip-tilt sensor is assumed to be the SAPHIRA, an infrared e-APD array manufactured
by Leonardo. [15, 16] Table 3 tabulates the photometry and noise parameters for the tip-tilt sensor. An on-axis
guide star with a K-band magnitude of 14 is used.

Table 3: Photometric and noise parameters for the tip-tilt sensor used in the simulations.

Parameter Value

Central wavelength 2.179 µm
Bandwidth 0.41 µm
Photometric zero point 7.0×1011

Sky background (magnitude / arcsec2) 12.71
Optical throughput 60%
Quantum efficiency 72%
Excess noise factor 1.35
Read noise 0.4e−

Dark current 10e−

3.4 Modeling the LGS elongation

In this section, we describe how the LGS elongation is modeled in the simulations. The LGS appears elongated
due to the parallax effect. For simplicity, let us first consider an observation at zenith with the sodium density
centered around height h0. We propagate an LGS from a laser launch telescope at an altitude of the of 2282m
above sea level, and image the return using a particular subaperture separated from the launch telescope by a
distance b. The three locations for the launch telescopes are shown in Figure 4. The value of is b is 1.83m for
the least elongated spots, and 23.60m for the most elongated spots.



Figure 4: Location of the laser launch telescopes.

The WFS is nominally conjugate to h0. Ignoring any atmospheric or telescope aberrations, a ray of light
stemming from a sodium atom at height h0 will be imaged at the center of the subaperture. For a sodium atom
at height hi, the angular offset is θi − θ0 (Figure 5).

Figure 5: Relationship between the height of a sodium atom and the angle it subtends on the wavefront sensor.

The procedure for computing the LGS elongation transfer function is as follows. First, the sodium density as
a function of altitude is loaded from a file. Next, a grid of pixels is created with the resolution of the SH WFS
in CEO. In this case, we are using 60x60 subapertures across the pupil, 8 pixels per subaperture in the pupil
and an oversampling parameter of 2 at a wavelength of 589 nm, so the unbinned pixel scale is 0.1429′′. All of
the calculations are performed at this resolution. We select an array of 84 × 84 pixels, which will be binned at
the final step to produce 14 × 14 binned pixels with a binned pixel scale of 0.8576′′. For each subaperture, we
compute the distance and angle to the laser launch telescope.

If we write the components of b as bx and by, then for each layer i with height hi we compute the displacements
xi and yi using the relationships

xi = tan(hi/bx)− tan(h0/bx) (3)

and
yi = tan(hi/by)− tan(h0/by) (4)



The PSF corresponding to that layer is computed by applying a subpixel shift using bilinear interpolation
to a delta function. This PSF is multiplied by the relative intensity of the corresponding sodium altitude and
coadded to all of the other sodium altitudes.

3.5 Wavefront control

The simulations were run for a total of 1.5 s at a rate of 500Hz. The feedback control loops were modeled as
an integral controller with a loop gain of 0.6. There was also a pure delay of one cycle, which was added to
the one cycle inherent in the camera stare and the zero-order hold of the wavefront corrector. The high-order
reconstructor consists of a minimum-variance tomographic reconstructor operating in pseudo open-loop. The
tip-tilt loop is controlled using a least-squares reconstructor in closed-loop. The adaptive secondary mirror
(ASM) is in the common path and corrects the wavefront incident on the science instrument as well as all of the
WFSs. The first 200 Karhunen-Loève modes are corrected for each of the seven segments, for a total of 1400
modes. The temporal dynamics of the ASM and were deemed negligible for this study.

4. SIMULATION RESULTS

In this section, we run simulations to compare the different centroiding algorithms. The following properties are
compared: computation time, sensitivity to measurement noise, sensitivity to uplink tip-tilt errors and sensitivity
to LGS profile variations.

4.1 Computation time of centroiding algorithms

An important concern for the ELTs is whether the centroiding algorithms can be implemented in real time. The
algorithms were implemented in Python using the CuPy library to take advantage of GPU processing. The
timing results were obtained using an NVIDIA RTX A5000 GPU and are tabulated in Table 4. These numbers
are sufficiently low to assume that using a more powerful GPU and a more efficient implementation would allow
real-time operation at 500Hz to 1000Hz.

Table 4: Timing results for the different centroiding algorithms.

Algorithm Total time (ms)

Centroid 1.1
Weighted centroid 1.2
Weighted centroid with dynamic recentering 5.4
Matched filter 1.3

4.2 Linearity

The linearity of the centroiding algorithms was evaluated by applying a tip of 0.1′′ to each WFS and recording
the change in the centroids. For each of the six WFSs, a different algorithm was used, and the response is plotted
in Figure 6. The results show that the centroid and matched filter are extremely linear. The soft window is
significantly more linear than the hard window, but dynamically recentering the spots alleviates the non-linearity
of the hard window. The HARMONI weights produce a response that depends on the elongation. We could
calibrate the centroid gain on a subaperture-by-subaperture basis, but this would be cumbersome and error-
prone in real life. Instead, the centroids were multiplied by a constant gain of 1.5 so that the loop gain was
approximately equal for all centroiding algorithms.



Figure 6: Response of each of the centroiding algorithms to a tip of 0.1′′.

4.3 Measurement noise

The effect of measurement noise has two components: a bias in the centroids, and a random, approximately
Gaussian component. The measurement noise is propagated via the wavefront reconstructor, which leads to a
residual wavefront error. The impact of measurement errors is not uniform, since in LTAO some measurements
are more redundant than others.

Simulations were run with and without measurement noise, with the results displayed in Table 5. When there
is no noise, all of the algorithms produce similar results except for the weighted centroid with the HARMONI
weights. In the presence of noise, the conventional centroid ceases to be competitive. It is encouraging that
there are several feasible algorithms. The soft window is better than the hard window, and dynamic recentering
improves the performance of both.

Table 5: Wavefront error (nm) for the different centroiding algorithms with and without noise.

Algorithm No noise With noise

Centroid 180.0 249.8
Weighted centroid, hard window 186.7 200.1
Weighted centroid, soft window 180.2 196.9
Weighted centroid, HARMONI weights 212.3 224.0
Weighted centroid, hard window, dynamic recenter 182.2 197.2
Weighted centroid, soft window, dynamic recenter 178.7 193.8
Matched filter 178.8 200.0

4.4 Uplink tip-tilt errors

In Section 4.3, the spots were well centered around their nominal positions. However, in practice, the spots will
be displaced due to uplink tip-tilt errors. Measured residual uplink tip-tilt time-series from the adaptive optics
facility (AOF) at the VLT were scaled and applied as a tip-tilt to the wavefront experienced by the LGS WFSs.
The GMT is required to deliver a residual uplink tip-tilt of less than 0.15′′ RMS per axis. The results for various
levels of uplink tip-tilt errors are tabulated in Table 6. Measurement noise was applied to all of the simulations.



Table 6: Wavefront error (nm) for the different centroiding algorithms with various levels of uplink tip-tilt errors.

Algorithm 0′′ 0.05′′ 0.1′′ 0.15′′ 0.2′′

Weighted centroid, hard window 200.1 200.6 205.7 213.1 222.4
Weighted centroid, soft window 196.9 198.0 200.8 205.5 211.2
Weighted centroid, HARMONI weights 224.0 228.5 239.0 256.2 276.5
Weighted centroid, hard window, dynamic recenter 197.2 197.0 197.1 197.5 197.8
Weighted centroid, soft window, dynamic recenter 193.8 193.9 195.6 195.4 195.3
Matched filter 200.0 200.9 203.2 206.8 211.5

4.5 LGS profile variations

The simulations to date assume that we know the sodium profile perfectly. In practice, the sodium profile varies
with time, and at best we have an estimate of the profile at some time in the past. Simulations were run were
the weights were computed using a profile that is 100 s old. In addition, the simulations were repeated with quite
a different turbulence profile, as shown in Figure 7. The simulations were all run with measurement noise and
0.15′′ of uplink tip-tilt errors. The results, tabulated in Table 7, suggest that the weighted centroid is largely
insensitive to changes in the sodium profile. However, the matched filter requires an excellent estimate of the
sodium profile to perform well. The matched filter uses the derivative with respect to x- and y of the expected
spot intensity to estimate the wavefront slope, and changes in sodium structure lead to changes in the derivative.
By contrast, the weighted centroid only needs to know the expected location of the spot, and not its expected
intensity distribution.

Figure 7: Sodium profile used to compute the weights for the “incorrect” case.

Table 7: Wavefront error (nm) with different assumed sodiums profile for the different centroiding algorithms.

Algorithm Correct 100 s stale Incorrect

Weighted centroid, hard window 213.1 213.0 212.4
Weighted centroid, soft window 205.5 205.4 206.5
Weighted centroid, HARMONI weights 256.4 251.0 238.3
Weighted centroid, hard window, dynamic recenter 197.5 196.9 198.4
Weighted centroid, soft window, dynamic recenter 195.4 196.8 197.2
Matched filter 206.8 207.2 231.3

5. WAVEFRONT RECONSTRUCTION

5.1 Minimum-variance tomographic reconstruction

The wavefront reconstruction is performed using a minimum-variance reconstructor operating in pseudo open-
loop. The reconstructor uses a model of the atmospheric turbulence, telescope aberrations and measurement



noise to compute the optimal tomographic wavefront estimate. The tomographic reconstructor computes the
wavefront along a grid of points in the direction of the science target, and then projects the wavefront onto the
modes of the adaptive secondary mirror (ASM). The reconstructor, R, is computed as:

R = PasmCxs(Css + Cnn)
−1 (5)

where Pasm is the projection matrix onto the ASM modes, Cxs is the cross-covariance matrix between the wave-
front at the science target and the WFS measurements, Css is the covariance matrix of the WFS measurements
and Cnn is the noise covariance matrix of the WFS measurements. The matrices Cxs and Css are computed
using a model of the atmospheric turbulence in open loop. The covariance matrices are computed using code
developed by Vidal et al.[17]

Since the LTAO system works in closed loop, the open-loop clopes need to be computed from the closed-loop
slopes and the ASM commands. Denoting the matrix that converts ASM commands to slopes as Masm, the
pseudo open-loop slopes, spol are computed as:

spol = s+Masmaasm (6)

where aASM are the ASM commands, and the residual wavefront estimate, uasm, is:

uasm = Rspol − aasm

= Rs+ (RMasm − I)aasm

= Rs+Daasm (7)

where D = RMasm − I and I is the identity matrix.

5.2 Theory of the non-diagonal noise covariance matrix

To our knowledge, every existing AO system uses a diagonal noise covariance matrix, where the noise from each
measurement is assumed to be uncorrelated. Some measurements have a higher covariance, for example due
to partially illuminated subapertures or elongated LGS spots. However, a diagonal covariance matrix does not
incorporate correlations between different measurements. In the case of elongated LGS spots, the noise in the
direction of elongation is higher than the noise in the perpendicular direction, even if these axes do not align
with the x- and y-axes of the WFS. As a result, the noise in different measurements is correlated.

Let us consider the following toy problem, with a single subaperture used to measure the location of a single
LGS spot, which can be accurately modeled as a Gaussian. Four different cases are considered: a 1.5′′ FWHM
unelongated spot, a 3′′ FWHM spot elongated along the x-axis, and the same spot rotated by 45◦ and 30◦, as
shown in Figure 8.

(a) Original (b) Elongated (c) Rotated by 45◦ (d) Rotated by 30◦

Figure 8: LGS spots used in the toy problem with a single subaperture.

In each case, we compute the covariance of the measurement noise in arbitrary but consistent units (Table 8).



Table 8: Noise covariance matrices for elongated spots.[
1 0
0 1

] [
4 0
0 1

] [
2.50 −1.50
−1.50 2.50

] [
3.20 −1.27
−1.27 1.74

]
(a) (b) (c) (d)

5.3 Simulations using a non-diagonal noise covariance matrix

The noise covariance matrix was computed experimentally in simulations by making 1000 measurements of the
centroids in the presence of measurement noise, and then computing the covariance of the measurements. Three
covariance matrices were computed:

� A diagonal covariance matrix with uniform entries consistent with the typical noise vairance.

� A diagonal covariance matrix where the values represent the variance of each wavefront slope.

� A non-diagonal covariance matrix where the covariance of both measurements from the same subaperture
are included and all values that pertain to measurements from unrelated subapertures are set to zero.

The reconstructor was recomputed using the three noise covariance matrices and the simulations were run, with
the results tabulated in Table 9. A weighted centroid with a soft window but no dynamic recentering was used.
The results show that there is a significant benefit to using a covariance matrix with the right values along the
leading diagonal. In addition, a measureable improvement is obtained by using a non-diagonal noise covariance
matrix. This is especially true for the case with noise and no jitter, which is the case for which the covariance
matrix was computed. Even when there is no measurement noise, a reconstructor with information about the
elongation direction performs better.

Table 9: Wavefront error (nm) for the different using a diagonal and non-diagonal noise covariance matrix. A
weighted centroid with the soft window but no dynamic recentering was used.

Uniform Diagonal Non-diagonal

No noise, no jitter 180.2 178.6 177.6
With noise, no jitter 196.9 187.2 184.3
With noise, with 0.15′′ jitter 205.5 196.7 195.3

6. CONCLUSION

In this paper, we discuss a number of different centroiding algorithms for elongated LGS spots. The conventional
center-of-mass algorithm exhibits an excellent linear response and excellent performance in the absence of noise,
but the performance degrades significantly in the presence of measurement noise. The noise can be mitigated
by using a weighted centroid with a soft window, where the weight values are unity where high signal-to-noise
is expected, tapering to zero where the signal-to-noise is low. The performance can be further improved by
dynamically recentering the spots before recomputing the weighted centroid. This is beneficial because the
centroid weights bias the centroids towards the center of the subaperture. With these two modifications to the
centroid algorithm, the performance is excellent even in the presence of uplink tip-tilt errors and changes in the
sodium profile. An alternative approach, selected by the TMT, is to used a matched filter. The matched filter is
very linear, has a large dynamic range and exhibits excellent performance in the presence of measurement noise,
but it is very sensitive to changes in the sodium profile. Both the matched filter and the weighted centroid are
very efficient and suitable for real-time operation. The additional step of dynamically recentering the spots adds
some computational complexity, but it is still feasible to implement in real time.

We find that for an LGS WFS with elongated spots, using the use of an noise covariance matrix that
incorporates the variance of each measurement leads to a significant reduction in wavefront error. The error can
be further reduced by using a non-diagonal noise covariance matrix that includes the correlations between the x-
and y-measurements from each subaperture. This is a new result, and to our knowledge, no existing AO system
uses a non-diagonal noise covariance matrix.
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